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Abstract: The experiences gathered during the past 30 years support the operational use of irrigation
scheduling based on frequent multi-spectral image data. Currently, the operational use of dense
time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical
parameters feasible, capturing crop water use across the growing season, with suitable temporal and
spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological
data, allow for precise predictions of crop water requirements with unprecedented spatial resolution.
This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers,
and can be provided in an easy-to-use manner and in near-real-time by using the improvements
achieved in web-GIS methodologies (Geographic Information Systems based on web technologies).
This paper reviews the most operational and explored methods based on optical remote sensing for
the assessment of crop water requirements, identifying strengths and weaknesses and proposing
alternatives to advance towards full operational application of this methodology. In addition,
we provide a general overview of the tools, which facilitates co-creation and collaboration with
stakeholders, paying special attention to these approaches based on web-GIS tools.

Keywords: crop water requirements; irrigation water requirements; crop coefficient; web-GIS; earth
observation; evapotranspiration

1. Introduction

Pressure on water use is globally increasing, and water demand for agriculture is the main driver
for this pressure in many countries. The current demand of fresh water for agriculture in the world is
unsustainable as recognized by Food and Agricultural Organization of the United Nations (FAO) [1].
However, in spite of these increasing pressures, irrigation intensification is required to be increased for
food production for a growing population [2]. One of the possible ways to solve this dilemma could
be the improvement of the efficiency in water use for irrigation to achieve a sustainable intensification
of irrigated agriculture, in line with the definition of Garnett et al. [3] as “to produce more outputs
with a more efficient use of all inputs (including knowledge and know-how) on a durable basis”.

In the scheme of crop management, a good first step towards the improvement of water use
efficiency is the adequacy of the water applied to the actual crop requirements, pointing to the necessity
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of adequate estimates of the net irrigation water requirements (NIWR). NIWR is the water that must be
supplied by irrigation to satisfy evapotranspiration, leaching and miscellaneous water supply that is
not provided by water stored in the soil and precipitation that enters the soil [4]. Therefore, calculation
of NIWR requires estimation of crop water requirements (CWR) and soil water balance where crop
evapotranspiration (ET) is the main component. A huge body of knowledge has been growing in
recent decades to estimate ET, CWR and NIWR. Manuals used worldwide to determine CWR and
NIWR, like FAO-24 [5] and FAO-56 [6], are milestones tracking this path, closely related to those that
describe the relationships between yield and water, like FAO-33 [7] and FAO-66 [8]. Nevertheless, the
complex interactions between root zone soil moisture flow, salinity build up, dry-matter production,
water quality degradation and opportunities to recycle water according to prevailing geo-hydrology
and drainage conditions will require the use of more complex models describing the system with
sufficient detail [9].

Most extension and irrigation advisory services at local and national scales were built on the wave
of the “Green Revolution” to help farmers supply the right amount of water to the crops to improve
the efficiency in the water use for irrigation. Nevertheless, better matching temporal and spatial
water supply to the actual crop demand is a challenging key issue for sustainable intensification, in
addition to nutrient supply and other agrochemical inputs. Despite its relevance and the efforts already
achieved, water management still faces a development bottleneck: it requires precise information
about the soil and plant conditions consistent across farms and from year to year. In addition, this
information must be available at the right temporal and spatial scales that match rapidly-evolving
capabilities to vary cultural procedures, irrigation and agrochemical inputs [10].

Remote sensing imagery from cameras on board satellites, aerial platforms, airplanes or similar
systems has been recognized as an exceptional tool to produce spatial information about ET.
Nevertheless, the lack of availability of timely images at the required spatial resolution, to be able
to capture the within-field variability of crop conditions over the growing cycle, has been hindering
the use of remote sensing approaches in practical applications. In 1984, in a seminar essay on the
potential use of remote sensing for making day-to-day farm management decisions, Ray Jackson [11]
stressed the overall importance to the growers of (a) timeliness, (b) frequency and (c) spatial resolution
of data. His observations have remained relevant; but the advances in communication technology
and computing, together with a large change in the data policy by National Aeronautics and Space
Administration (NASA) by the U.S. government, giving open and free access via the Internet to the
georeferenced Landsat images in near real time, are removing these barriers. The adoption by the
European Space Agency (ESA) of the same data policy, giving free and open access via the Internet to
the 10-m imagery acquired by Sentinel-2, is revolutionizing the satellite-based remote sensing system
for spatial resolutions in the range of 10–30 m. In addition, an increasing number of commercial
sensors at very high spatial resolution of 1–5 m, WorldView2, PLEIADES, DMC and DEIMOS, is ready
to provide frequent land observations with increasing capabilities.

Currently, the operational use of dense time series of remote sensing (RS)-based multispectral
imagery at high spatial resolution is able to monitor the crop biophysical parameters related with crop
ET and crop water use across the growing season, with suitable temporal and spatial resolutions. One
most prominent and direct application of these approaches in agriculture is irrigation management.
As described by Allen et al. [12], the benefits of these methodologies with respect to most classical
information sources (field measurements or general knowledge) are the possibility to cover large
areas, enabling sampling at high spatial resolutions and the zonation and/or integration over diverse
areas. In addition, these procedures are generally more economical than point measurements. The
literature is abundant in RS-based ET models or model variants and validations of these models
in different environments, surfaces and managements. Every model has strong scientific bases
and is well calibrated for ET assessment at particular temporal and spatial scales. The experiences
carried out within the PLEIADES project have confirmed that RS is a mature technology ready to be
transferred to operational applications in irrigation management [13], and the technological transfer
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has already begun, where farmers find economic incentives to increase the irrigation efficiency [14].
Nevertheless, the translation of ET estimates into irrigation requirements and recommendation needs
further development, and it involves additional engineering methods and operative issues. In addition,
the physical meaning of the results is different for the various ET models, and these results have
different applications in agriculture. Both aspects must be considered prior to recommending the most
adequate model for different purposes, and from our point of view, the scientific literature is scarce in
reviews analyzing these aspects.

In this framework of research and practical application, this paper reviews the basis of the most
common methods based on RS for ET assessment with the focus on irrigation assessment in agriculture.
We provide a comprehensive review of the basis of these models and their applicability, identifying the
strengths and weaknesses and proposing alternatives to advance towards full operational application.
Considering that these approaches are eminently applied, this paper also contains guidelines needed
to provide a realistic estimation of remote sensing-based CWR and NIWR in operative schemes and an
extensive description of the most operational decision support systems based on these methodologies.

2. Remote Sensing-Based Estimates of Evapotranspiration

Most of the methodologies for ET assessment based on RS data are based on the big leaf area
model [15,16] and further developments of the Penman–Monteith equation. This schematization relies
on the surface energy balance and the resistances approach for describing the transport of water vapor,
distinguishing between bulk surface and aerodynamic resistances [16]. The Penman–Monteith equation
can be applied to estimate ET once surface and aerodynamic resistances are properly determined for
a crop cover of given characteristics, namely hemispherical surface albedo, Leaf Area Index (LAI)
and height, as well as meteorological conditions and soil water status. In the context of irrigation
scheduling, the Penman–Monteith equation has been implemented in the standard procedure for
estimating crop water requirements, commonly known as the FAO-56 method [6]. In this procedure,
the concept of ET under standard conditions is formalized, i.e., “from disease-free, well-fertilized
crops, grown in large fields, under optimum soil water conditions and achieving full production
under the given climatic conditions” This definition allows for considering a minimum value of the
stomatal resistance driving the transpiration process, which essentially becomes a function of the
crop development, through the above-mentioned characteristics. This approach, defined in [6] as the
“direct calculation”, needs crop characteristics measured or estimated for each crop patch. Diversely,
for a water-stressed crop, the surface resistance increases according to the physiological response
mechanisms, which are characteristics of each species. The ET under non-standard conditions hence
requires additional data to solve the surface energy balance or to compute the soil water balance.

The direct calculation has been used to improve the definition of reference ET, ETo, by considering
a well-watered hypothetical grass surface having fixed crop height (0.12 m), albedo (0.23) and LAI (2.88).
Then, FAO-56 promotes the concept of crop coefficients in the so-called “two-step” procedure [5,6,17],
which is now widely used in irrigation practice. In this procedure, ET is estimated as a product
of two factors [6]. The first factor is the evaporative power of the atmosphere, ETo. The second
factor in the “two-step” approach is the crop coefficient, Kc, which includes three parameters: a
transpiration coefficient or basal crop coefficient, Kcb, the evaporative component of the bare soil
fraction, Ke [18], and the water stress coefficient, Ks, which is related to the soil water content through
the water balance in the root soil layer. In this framework, the Kcb is defined as the ratio between plant
transpiration in the absence of water stress and reference ETo. In contrast with the strong temporal
variability of ET values, the evolution of Kcb over time can be represented by a smooth continuous
function. Depending on the variable measured from satellites, three main RS approaches for ET
estimation have been applied: (a) based on surface energy balance (RSEB), (b) reflectance-based crop
coefficient (reflectance-based Kcb) and (c) by directly applying remote sensing-based parameters into
the Penman–Monteith equation (RS-PM). Figure 1 shows a schematic representation of the framework
for the integration of the different models for the assessment of CWR and NIWR.
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Figure 1. Overview of the remote sensing-based approaches for estimates of evapotranspiration and
net irrigation water requirements. The spatial scale of these approaches is related to the pixel size of
the utilized image data.

2.1. The Reflectance-Based Basal Crop Coefficient (Kcb)

The initial research relating crop development and canopy reflectance was developed during
the 1970s [19,20], and much of this work had its foundation in research developed during the 1960s,
as compiled by Pinter et al. [21]. Some of these authors already postulated the possible use of
these relationships for the estimation of crop transpiration and the desirable use of these approaches
for irrigation assessment in operative scenarios [22]. Following the development of the “two-step”
procedure, some pioneers provided empirical evidence about the direct relationship between the Kcb
values with the VI derived from multispectral satellite images [23–25] (see Figure 2).
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Despite the empirical evidence, the physics underlying the Kcb-VI relationships was controversial.
The arguments in favor of the causal Kcb-VI relationship include the direct relationship between Kcb
and the fraction of photosynthetic active radiation absorbed by the canopy (fPAR) and the relationship
of these parameters with the VIs. Some analytical approaches relating Kcb-VI and fPAR were proposed
by several authors during the following decades [26–31].
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The initial relationships already presented were developed in terms of empirical values of VI
and tabulated or common values for herbaceous crops, such as wheat and corn. The development
and popularization of different methods for the measurement of crop ET, such as lysimeters, eddy
covariance and Bowen ratio techniques, provided a new source of data for the development of empirical
Kcb-VI relationships, and a large number of crops were added to the classical species. Some examples
are the Kcb-VI relationships derived and evaluated for potato [32], cotton [33], sugar beets [34] and
vegetable crops, including garlic, bell pepper, broccoli and lettuce [35]. The advantage of using
Kcb-VI is recognized for almost every crop, but the benefit of these methods applied to fruit trees is of
paramount importance. The differences in local practices (planting densities, plant architecture and
the management of the crop understory) have a great effect on the actual value of the crop coefficient,
and studies have demonstrated the capability of the Kcb derived from VI to capture these variations.
Along this line, successful developments have been made for pecan trees [36], vineyards [37,38] and
apples [39], and several attempts have been made in natural vegetation [40,41].

In addition to the previous research, based on ground-based measurements of ET, special attention
should be paid to those relationships based on VI data and ET estimated based on thermal-based
remote sensing models [42–44]. These methods allow for a determination of latent heat fluxes, hence
the actual ET of crops. When these methods are applied over irrigated areas (where in most cases ET
can be considered under standard conditions), they result in a massive calibration of the single Kc-VIs
relationships without the necessity of cumbersome and expensive field campaigns measuring ET.

2.2. Remote Sensing-Based Penman–Monteith Direct Approaches

As mentioned before, the direct calculation of the Penman–Monteith equation can be used to
estimate the maximum fluxes of evaporation from soil (E) and transpiration from plant leaves (T) once
provided with the canopy parameters related to the surface properties [45]; essentially the surface
and canopy resistances (rs and rc, respectively) and the net radiation (Rn). These parameters are, in
turn, related to three parameters derived from RS data: namely, the Leaf Area Index (LAI), the crop
height (hc) and the surface albedo (r). The variable rc is inversely related to the active LAI and, in turn,
dependent on the maximum resistance of a single leaf. The active LAI is the index of the leaf area that
actively contributes to the surface heat and vapor transfer [6]. It is generally the upper, sunlit portion
of a dense canopy and can be approximated by 0.5 × LAI [45]. The maximum resistance of a single
leaf is crop-specific and differs among crop varieties and crop management [6], but a fixed value of
100 m/s can be considered in operative approaches [45]. The canopy architecture parameter used in the
estimation of rc is the canopy height. Although the formulation can vary depending on meteorological
conditions (stability), it is generally accepted that, in agricultural fields under well-watered conditions,
the stability correction is not needed. In addition, in most cases for irrigated environments, the
radiative component of the Penman–Monteith equation is dominant over the aerodynamic term; hence,
a fixed value of crop height can be considered (i.e., 0.4 m for herbaceous crops, 1.2 m for tree crops)
without significantly affecting the final accuracy. There is substantial literature on the estimation of
the two most relevant canopy parameters, surface albedo and LAI from VIS-NIR observations, based
either on empirical relationships with different VIs or physically-based methods, such as radiative
transfer models [46,47]. This approach offers the advantage of a validation based on the estimated
accuracy of albedo and LAI, the latter easily measurable in the field by means of portable optical
analyzers. A similar methodology is the base of the MOD16 global ET product [48,49] and further
applications in natural vegetation and regional scales [50–53]. This method has been evaluated for ET
estimates and irrigation management at the scale of irrigation schemes [54], in fruit trees [55–57] and is
the basis of an irrigation advisory service operational in Italy, Austria and Australia [58].

2.3. The Remote Sensing Surface Energy Balance

The remote sensing surface energy balance approaches (RSEB) derive surface fluxes from the
energy balance equation [59–62] by calculating the required variables from RS primary and secondary
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observables [63]. In particular, latent heat flux, λET, is estimated as the residual term of the surface
energy balance equation:

λET = Rn − G − H (1)

where λ indicates the latent heat of the vaporization of water (J·kg−1), Rn is the net radiation flux
(W·m−2), G is the soil heat flux and H is the sensible heat flux. The main observables are the
bi-hemispherical surface reflectance, which determines Rn, and the radiometric surface temperature
(TR), derived from thermal band imagery, and used to compute the sensible heat flux. The different
schemes of RSEB models differ as to how the difference between TR and the aerodynamic temperature,
To, is addressed. This difference is needed to compute the sensible heat. TR and To are clearly
related [64], but this relationship is highly complex, since TR depends on the temperature of the
different elements that occupy the radiometer view, while To depends on surface aerodynamic
roughness, wind speed and the coupling of soil and canopy elements to the atmosphere.

The simplest RS-based SEB approaches use empirical/semi-empirical methods for adjusting TR to
To, tuned to account for the spatial variability in the roughness lengths for heat and momentum
transport [65–68]. Other approaches avoid the problem by computing the aerodynamic to air
gradient, TA-To, needed to compute the latent heat flux. These methods are based on selecting
pixels in the satellite image representing the extreme heat and water exchanging surfaces. Then, they
calculate the spatially-distributed sensible heat flux, assuming a linear relationship between TR and
the near-surface air temperature gradient across the image [59,69–71]. Other TR-based approaches
model the effects of partial vegetation cover on To using two-source model parameterizations [64,72],
which partition surface fluxes between the soil and canopy components of the scene. This more
physically-based approach does not require in situ calibration, although most implementations
do require accurate radiometric temperature measurements. Anderson et al. [73] proposed an
improvement of a two-source scheme by incorporating a simple description of planetary boundary
layer dynamics. The resulting atmosphere-land exchange inverse (ALEXI) and an associated flux
disaggregation technique (DisALEXI) are a multi-sensor thermal approach to ET mapping that reduces
the need for ancillary data input and is able to deal with errors in TR remote estimation by using the
rate of change in TR observations [74,75].

The partitioning of available energy through TR inherently accounts for the increase of plant
temperature under water stress conditions [22,76], and successful model validation under water
stress conditions has been regularly published [62,77,78]. A comparison between a two-source model
and an internally-calibrated model over herbaceous crops [79] showed a reasonable agreement with
ground measurements. This approach is very attractive in the calibration and validation of the other
approaches presented here [80] and for applications such as water stress assessment. Water stress is an
important indicator for the evaluation of adequate crop water management in precision agriculture.
Stress indicators are useful to diagnose the causes of crop yield variability and develop management
strategies [81] in water-limited environments. The most classical indicator of crop water stress that uses
RS data without using direct measurements [63] is the crop water stress index (CWSI) based on the
difference between air and canopy temperature [22,76]. Later development of the CWI considered the
effect of partial canopy covers in the surface temperature, as is the case of the surface-air temperature
and VI relationships [62], and further developments and simplifications [60,82]. The literature is
profuse in the use of CWSI or similar indicators for the assessment of crop water status and irrigation
scheduling [83–86]. These indices and other diagnostic tools are indicators of the plant water status,
revealing the effects of the water deficit, but they cannot predict the irrigation timing or amount
needed to maintain the crop under optimum conditions. Other approaches to water stress, such as
the hyperspectral indices, have gathered promising results in agriculture [87–90] in addition to other
stress indicators based on multispectral satellite signal, such as the Normalized Difference Water Index
(NDWI) [91], and are attractive for extensive applications in natural vegetation.
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2.4. Coupling Models

The soil water balance models based on remote sensing data (RS-SWB models) provide continuous
and predictive estimation of the soil water content, cumulative ET [92] and irrigation requirements.
However, for an adequate estimation of these components, the SWB model requires knowledge of the
water inputs, precipitation and irrigation, and the soil hydraulic properties, i.e., actual and maximum
amount of soil water storage in the root zone, if classical static volume balance approaches are used.
Accurate values of maximum and actual water content are necessary in every SWB model, although
both concepts could be represented with different notations [6,17,73,93]. The actual content can be
estimated when the balance is maintained for long periods, departing from dates when the soil can
be considered at full capacity, but the uncertainties about the spatial variability of the water inputs
(mainly precipitation) and the inaccuracy in estimating other components result in significant bias
at large spatial scales and for long periods. In addition, the practical operation of these models is
also limited by the narrow knowledge about the soil properties, which define the water retention,
field capacity and wilting point, in addition to the actual root depths for most of the crops growing in
heterogeneous areas.

Within the six approaches classified by Wang-Erlandsson et al. [94], for the estimation of root
zone water storage capacity, RS-based studies are generally based on field observations and look up
tables [95–98]. Nevertheless, some recent studies propose the optimization-calibration and inverse
modelling approaches with diverse purposes. Some approaches assimilate into the soil water balance
models, either water stress estimates based on canopy temperature [99,100] or ET estimates based
on SEB models [73,92,95,101], in order to calibrate the fraction of water depleted derived from the
water balance model. In a slightly different approach, some authors propose the integration of
actual ET values in order to calibrate the soil water balance model in terms of the root zone storage
capacity [94,102–104]. The rationale of these approaches is that any empirical approach to the plant
water stress, or alternative formulations as those based on the canopy temperature, must be equivalent
to the soil water stress, a stress index based on the parametrization of the soil properties [101]. Both
approaches to water stress result in similar values only if the SWB model is properly initialized and
maintained. Therefore, those variables with large uncertainties, as is the case of the fraction of water
depleted or the root zone storage capacity, can be calibrated.

However, the lack of information about the actual irrigation scheduling adopted by the farmers
is the critical limitation when applying soil water balance models. Irrigation criteria adopted by
farmers depend on several factors related to the operation and management of irrigation conveyance
and distribution systems and to farmers’ perception about the best time and duration of irrigation
applications. This issue might be addressed by using deterministic or stochastic approaches to
parametrize farmers’ behavior [105]. Still, remote sensing is very valuable in this context since the
knowledge of the actual development of crops is one of the most important variables in the description
of this process.

2.5. Advances Achieved in Proximal Remote Sensing

The denomination of proximal remote sensing includes a wide range of devices mounted in
ground-based and aerial platforms, including aircraft and unmanned aerial vehicles (UAV). In recent
years, we have assisted the increase in the use of UAVs in agriculture. The reasons for this increase
are multiple: affordable cost, relative simplicity for operation and images post-processing, in addition
to exceptional technical advances in the cost reductions and the size of sensors related to the Global
Positioning System, pre-programmed flights, inertial movement units and auto-pilots [106].

These systems can fill some of the gaps in our observational capabilities exclusively based on
extra-terrestrial platforms. Regarding the assessment of ET and irrigation requirements, the methods
analyzed in this work can be also based on the images acquired by UAVs, providing the needed spatial
resolution in some agricultural areas and reducing the impact of cloudiness in the optical satellite
images. Although the compatibility between satellite and proximal RS is evident, the images based on
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UAV platforms are mainly used in applications that require exceptional spatial resolution or when
the phenomena analyzed occur in short temporal periods [107,108]. In this line, several approaches
analyzed the use of very high resolution images for the assessment of nutrition or water stress indices
at the scale of the row or the tree crown scale [87–90,109], gathering promising results in agriculture.

2.6. Strength and Weakness of the RS-Based Models for Irrigation Assessment

The great strength of the reflectance-based models from the point of view of crop irrigation
management is the capability to estimate the potential crop transpiration, based on the temporal
evolution of the RS-based Kcb and the actual ETo values. This ability of VI enables the description
of the photosynthetic magnitude of the canopy [110–112]. Reflectance-based basal crop coefficients
represent the “potential” or maximum ratio between transpiration and ETo for the canopy, as happens
for an unstressed canopy following the definition of the Kcb concept. The advantages of VI-based
Kcb estimation for irrigation assessment are clear as proposed by Allen et al. [12] in a review of
the methods used for ET estimation: (a) probably the simplest method to introduce RS data is
the operational application of the Penman–Monteith formulation for ET assessment known as the
“two-step” methodology, which enables quick analyses that can be made by mid-level technicians;
(b) large areas can be covered; and (c) a very high spatial resolution if aerial imagery is used.
As indicated by the same authors, the main weaknesses of the methods based on the Kcb-VIs for
crop ET assessment are: (a) the estimation of the evaporation component (from soil) is less certain
than the transpiration component because of the lack of a direct relationship with vegetation amount;
(b) the relationships tend to overestimate transpiration under conditions of water shortage; and (c) the
relationships may vary with the type of vegetation; stomatal control (and thus Kcb-VI relationships)
can vary among types of vegetation.

The variation in the Kcb-VI relationships can be perceived in the compilation of equations
based on the most used multispectral vegetation indices, as is the case of the normalized difference
vegetation index (NDVI) and the soil adjusted vegetation index (SAVI), presented in Table 1. The
relationships shown in Table 1 reveal a similarity for those relationships that reach the maximum
NDVI or SAVI values, typically around 0.9 for NDVI and 0.7 for SAVI, resulting in a mean Kcb value
of 1.14 and a standard deviation (SD) equal to 0.08. The main differences appear for bare soil, the
corresponding NDVI value being around 0.15 and the SAVI value around 0.1. Some relationships
consider a minimum Kcb equal to zero for bare soil [30,31,34,113], arguing that no transpiration occurs
for bare soil conditions. Other Kcb-VI relationships are established in terms of Kcb values greater than
zero for bare soil conditions [23,35,37,114]. This has been recurrently analyzed in the literature, as early
as Wright [18] and Allen et al. [6]. Torres and Calera [115] demonstrated empirically that this residual
Kcb can be expected for bare soil conditions and should be attributed to the evaporation component
rather than plant transpiration [113]. The discussion about the most adequate minimum Kcb in
reproducing the crop ET is still open, and further detailed analysis will be necessary for providing a
practical solution.

Differences in the VIs measured with different instruments, and the difficulty to measure canopy
transpiration, in addition to the effects of the crop physiology and structure in the ET process
could be the basis of the mentioned discrepancies. The effect of the measurement instruments
depends on the sensor’s spectral and radiometric resolutions [116], differences in the acquisition
angle [117,118], atmospheric correction, sensor degradation and the correctness of the calibration
process [119]. These sources of uncertainty can be minimized by applying cross-calibration approaches
and ensuring the compatibility of the data-sources [116]. Additional differences might be attributed to
the well-documented variances in the stomatal response for the different species [120,121] in contrast
to the insensibility to these changes of the VI used for the assessment of Kcb.

Some Kcb-VI relationships exhibit very good agreement for different crops. Odi-Lara et al. [39]
and Campos et al. [122] found that the relationship described by Campos et al. [37] in row vineyards
was adequate for ET assessment in apple trees and Mediterranean holm oak savanna. Hornbuckle [123]
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concluded that several relationships, developed for multiple different crops [124], are valid for
the assessment of vineyard ET in Australia. Melton et al. [125] proposed the use of a generalized
relationship for real-time and operational purposes and apply crop-specific relationships a posteriori,
when information about crop architecture is available.

Table 1. Compilation of Kcb-VI relationships found in the literature.

Crop Equation Reference

Corn Kcb = 1.36 × NDVI − 0.06 [23]
Wheat Kcb = 1.46 × NDVI − 0.26 [30]
Cotton Kcb = 1.49 × NDVI − 0.12 [33]
Wheat Kcb = 1.93 × NDVI3 − 2.57 × NDVI2 + 1.63 × NDVI − 0.18 [126]
Wheat Kcb = 1.64 × NDVI − 0.12 [31]

Row vineyard Kcb = 1.44 × NDVI−0.1 [37]
Garlic Kcb = −1.56 × NDVI2 + 2.66 × NDVI − 0.08 [35]

Bell pepper Kcb = −0.12 × NDVI2 + 1.45 × NDVI − 0.06 [35]
Broccoli Kcb = −1.48 × NDVI2 + 2.64 × NDVI − 0.17 [35]
Lettuce Kcb = −0.11 × NDVI2 + 1.39 × NDVI + 0.01 [35]

Corn Kcb = 1.77 × SAVI + 0.02 [127]
Potato Kcb = 1.36 × SAVI + 0.06 [32]

Sugar beet Kcb = 1.74 × SAVI − 0.16 [34]
Row vineyard Kcb = 1.79 × SAVI − 0.08 [37]

Cotton Kcb = 1.74 × SAVI − 0.16 [113]
Garlic Kcb = 1.82 × SAVI − 0.16 [113]
Olive Kcb = 1.59 × SAVI − 0.14 [113]

Mandarin Kcb = 0.99 × SAVI − 0.09 [113]
Peach Kcb = 1.29 × SAVI − 0.12 [113]

Apple trees Kcb = 1.82 ± 0.19 × SAVI − 0.07 ± 0.06 [39]

The RS-PM methods are also in surface reflectance, thus the strength and weakness are similar
to the reflectance-based Kcb models. The RS-PM approach solves the problem of the estimation of
the resistances in the Penman–Monteith formulation for the conditions of a well-watered canopy. The
parameters used in the respective solutions are strongly related with RS data and the key parameters,
LAI, albedo and hc, and these variables describe smooth-continuous functions that can be easily
interpolated over time. The weaknesses are in the crop-specific LAI-Vis’ and hc-Vis’ relationships,
the impossibility to reflect the effect of the water stress in the ET process and the role of the soil
evaporation. In a complete analysis of the LAI-VIs, Anderson et al. [128] concluded that the LAI-Vis’
relationships were relatively stable for two different crops (corn and soybean) using determinate
VIs. Similarly, Vuolo et al. [129] concluded that the models and calibration parameters used to
estimate LAI from VIs can be transferred across different environments, management practices and
for multiple crops, including alfalfa, corn, sugar beet and vineyards. In addition, according to the
sensitivity analysis published by Consoli et al. [55] and D’Urso [45], the deviation of ET values
by considering a constant value of hc, over a wide range of leaf area indices, is lower than 10%.
Furthermore, the availability of sensors with improved spectral and spatial resolution, such as MSI
on board the Sentinel-2 satellite, allows the application of inversion methods to canopy radiation
transfer models to estimate crop biophysical parameters with greater reliability compared to other
methods. These methods take into account the bidirectional reflectance distribution effects of the
canopy, as well as the actual illumination-viewing geometry of the sensors. Artificial neural networks
have proven to be effective in terms of accuracy and computational time [130], and tools are provided
in freely available packages, such as the Sentinel Application Platform (SNAP), developed by the
ESA to estimate LAI, fractional vegetation cover, and other parameters from Sentinel-2 data (https:
//sentinel.esa.int/web/sentinel/toolboxes/sentinel-2). Experimental studies have shown the accuracy
of this approach for LAI or ET estimation in different environments and crops.

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2
https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-2
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The weakness of RSEB approaches is the representativeness of the ET estimates over time because
they provide an instantaneous estimation of the ET at the image acquisition time. This instantaneous
value must be extrapolated to daily amounts on a physical basis, such as the conservation of the energy
partitioning [79] or the stability of the crop coefficient [69]. The time gaps between estimates of ET
for all satellite systems may bias daily-to-seasonal estimates. As pointed out by Allen et al. [69], the
effects of precipitation or irrigation events occurring between satellite overpasses may be missed,
resulting in underestimation of seasonal ET. In addition, processing of images impacted from recent
precipitation events could lead to an overestimation of the seasonal values of ET if these images are
used in the interpolation. In the framework of NIWR estimates, another operative issue is the adequate
interpretation of ET data obtained under water stress conditions. According to the definitions provided
in the Introduction, NIWR is the amount of water that should be applied in order to maintain the crop
transpiring at its potential rate. Acquiring ET data under water stress conditions could lead to an
underestimation of NIWR if the actual values are not compared with the potential (and eventually
desired) ET rates for the analyzed canopies. In addition to these weaknesses, the limited availability
of thermal observations in terms of spatial and temporal resolution hampers the development of
operational applications of surface energy balance from remote sensing.

In general terms, the main difference between RSEB models with respect to RS-PM and
reflectance-based Kcb approaches is the assessment of water stress, but the three approaches should
result in similar values when applied under non-water limited conditions. Singh and Irmak [44] found
that a Kc-NDVI relationship derived from the SEBAL model (Surface Energy Balance Algorithm for
Land) is able to reproduce the actual ET measured with a Bowen ratio station. Tasumi et al. [42]
concluded that the ET estimates from a Kc-NDVI relationships correspond well with the results of the
model METRIC (Mapping Evapotranspiration aT high Resolution with Internal Calibration) applied
for multiple crops in an irrigated area in Idaho. Rafn et al. [43] demonstrated that the results of three
Kc-NDVI relationships, derived from empirical or analytical approaches, are within the range of
±10% of the ET estimate based on the METRIC model. Hunsaker et al. [33] found similar yield and
water productivity in cotton plots irrigated following the Kc-NDVI relationship and the Kc values
recommended in the FAO-56 manual (adapted to the area, planting dates and crop development).
Rubio et al. [80] published a direct comparison of two RSEB models, the RS-PM approach and the
reflectance-based Kcb. These authors concluded that the RS-PM and reflectance-based Kcb models
are in agreement with each other, although these authors did avoid the direct comparison of both
approaches with RSEB models because of their different nature. Similarly, D´Urso et al. [13] obtained a
comparable accuracy when the reflectance-based Kcb and the RS-PM models are applied to herbaceous
crops, like corn, alfalfa and wheat. Gonzalez-Dugo et al. [79] compared three RSEB models and
the reflectance-based Kcb approach for the assessment of ET in irrigated herbaceous crops. These
authors obtained similar accuracy for every model, but the two-source RSEB and the reflectance-based
Kcb were the approaches with the lower RMSE. In the view of the results, we can conclude that all
models provide similar results in the assessment of the ET of irrigated herbaceous crops (homogeneous
canopies under non-water-limited conditions). Further studies should analyze if these differences in
the accuracy of the model have a measurable impact in irrigation assessment systems.

Although each model has been evaluated in other crops, as is the case of horticultural and fruit
trees, we did not find comparative studies running different models on the same conditions. Future
studies comparing different approaches for these crops and in operative schemes will provide further
insights on model performance. An interesting research line, no yet translated to the scientific literature,
is the implementation of the models in the daily routine in operational scenarios. The development of
this research line, quantifying the actual improvements in terms of water productivity or economic
returns, is necessary in the short term and will provide arguments for the adoption of these technologies
in the sector. In addition, the accumulation of knowledge and experimental evidence will provide
certainty about the actual consequences of the propagation of the errors associated with the models
used for the ET assessment.
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In addition, the interest of these methods goes beyond the perspective of irrigation management.
Although it is not discussed in this paper, the output of this remote sensing-based soil water balance
paves the way for water accounting at the pixel scale for water governance and environmental purposes.
The methodologies discussed here can be used for the assessment of irrigation performance indicators
in large areas [131,132] and the analysis of the sustainability of irrigated systems [133]. Special mention
deserves the analysis of water productivity in great areas [134] or at the global scale as proposed in
the FAO-WAPOR program (FAO WAter PROductivity, available at http://www.fao.org/in-action/
remote-sensing-for-water-productivity/en/). Finally, we identify promising perspectives for the use
of this methodology together with on-site flowmeters to enforce legal rules about monitoring permitted
abstraction volumes to use for irrigation [135].

3. Operational Use of Remote Sensing for Irrigation Water Management

3.1. Monitoring the Crop Development at the Right Spatial and Temporal Scale

Monitoring crop development and crop ET over the growing season for the purpose of irrigation
management requires dense time series of multispectral imagery at a spatial resolution high enough to
resolve within-field variability and delivered in real time. The spatial and temporal resolution of the
resulting maps of ET and NIWR depend on the pixel size of the input imagery. In addition, and given
that the crop evolves rapidly in most cases, single satellite sensors or platforms cannot adequately
capture these changes due to their limited temporal resolution and the impact of cloudiness in the
optical and thermal satellite images. In a commentary about the future of the remote sensing-based ET,
Fisher et al. [136] highlighted that neither planned nor existing space missions have been specified to
fully meet the spatial, temporal, spectral and accuracy requirements outlined for complete ET-based
science and applications. However, virtual constellations of planned and existing satellites help to
overcome this limitation by combining all available observations to mitigate the limitations of any one
particular sensor [137]. For models based on reflectance-based VI and further secondary variables,
which rely on VIS-NIR imagery, the pixel size ranges usually between 5 and 30 m using most of
the commercial (World View, Rapid Eye, DMC and DEIMOS) and free images from the sensors on
Landsat 8 and Sentinel-2a currently in orbit. Accordingly, the virtual constellation of Landsat 8 and
Sentinel-2a currently provides, at no cost, a time resolution of around one image per week, which
can be considered as a minimum for the adequate monitoring of crop development. The time series
of both sensors are accessible through the USGS (http://glovis.usgs.gov/) and Copernicus (https:
//cophub.copernicus.eu/) sites. In addition, some companies, like Amazon S3 (https://aws.amazon.
com/es/public-data-sets/landsat/) and Google Earth Engine (https://earthengine.google.com/), are
offering catalogs of satellite imagery from both sensors at the planetary scale, as well as additional
cloud computing capabilities. The use of multi-sensor virtual constellations is the only way to ensure
the frequent availability of cloud-free images. Yet, the actual number of images effectively usable in
an area or period can be seriously impacted by clouds, even considering multiple platforms. Some
initiatives, like the recent launching of Sentinel-2b, foreseen for 2017 (https://earth.esa.int/web/
guest/missions/esa-operational-eo-missions/sentinel-2), will increase the availability of cloud-free
imagery. Currently, as presented in the next section, the demand for irrigation recommendations
and the implementation of operational services is primarily in arid and semiarid areas characterized
mostly by low precipitation and high atmospheric demand, which are only minimally affected by
clouds. However, the implementation of these methods in areas of significant cloudiness must also
be considered.

The availability of dense time series of images at the global scale also implies the necessity of
massive storage, automatic download and archiving and computing capabilities as provided by the
companies cited above. However, the accessibility to the images (free of charge and near-real-time
processing capabilities) provided by the ESA and NASA incentivizes the development of the operative
services analyzed in this paper and opens the possibility of the massive use and validation of the cited

http://www.fao.org/in-action/remote-sensing-for-water-productivity/en/
http://www.fao.org/in-action/remote-sensing-for-water-productivity/en/
http://glovis.usgs.gov/
https://cophub.copernicus.eu/
https://cophub.copernicus.eu/
https://aws.amazon.com/es/public-data-sets/landsat/
https://aws.amazon.com/es/public-data-sets/landsat/
https://earthengine.google.com/
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2
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approaches. In this line, we recognize the effort made to make publicly available the codes of SEBS
(Surface Energy Balance System, http://pcraster.geo.uu.nl/projects/applications/sebs/) or METRIC
(https://cran.r-project.org/).

ET products based on RSEB can have medium spatial resolution for most operational satellites.
The pixel size ranges from 100 m for the thermal sensor on board Landsat 8 to 1000 m for
MODIS-AQUA, MODIS-TERRA and Sentinel-3; additional data sources and downscaling algorithms
and interpolation methods can be used to improve the temporal and spatial resolution. From the
point of view of crop management, the strength of these models is the assessment of surface ET
also under water stress conditions and further indicators of water stress and irrigation performance.
Nevertheless, the spatial resolution of thermal images provided by the most operational platforms
is not appropriate for small agricultural fields [12] since the pixels may overlay broad mixtures and
densities of crops so that surface temperature signals are mixed and the ET retrievals are difficult
to interpret. Therefore, from an operative point of view for irrigation management, the procedures
based on satellite canopy temperatures seems to be complementary with that previously described,
providing an independent quality control in the suitable areas. Efforts are ongoing to implement
disaggregation techniques to increase the effective spatial resolution from satellite thermal imagery,
reaching spatial resolutions comparable to the most common multispectral images [138]. In addition,
the spatial resolution can be improved up to 2–5 m from aerial images, and growing advances on the
use of airborne thermal cameras show very promising perspectives to produce temperature maps at
very high spatial resolution [88,139].

3.2. RS-Based Irrigation Scheduling: Implementation

As presented and discussed in the previous sections, time series of current multispectral imagery
that provides canopy reflectance can be directly converted, either through Kcb-VI relationships, or
using more complex models, into maps of Kcb, or related variables describing the potential crop water
use. Gap filling techniques between images close in time allow the production of daily maps of the
variables of interest, LAI, hc or, directly, Kcb, taking advantage of smooth-continuous curves described
by these parameters and so avoiding the pernicious effects of cloudiness. The product of these Kcb
maps and reference evapotranspiration, or the solution of the PM equation using RS inputs, directly
provides the daily potential transpiration on a pixel by pixel basis. For the adequate determination
of NIWR, both VI-based Kcb RS-PM models require the assessment of soil water content. These
approaches estimate crop ET on the noted models, and this ET is connected to the water balance in
order to update the water depletion in the soil layer accessed by the roots. Irrigation timings and
amount assessment will depend on the estimates of water depleted and water holding capacity in
the root zone. For these reasons, some of these approaches have been integrated into a classical soil
water balance, like that described in FAO-56 [6], demonstrating good performance for the assessment
of irrigation water requirements [96,140,141] in comparison with actual irrigation data. The literature
is replete in soil water balance models, with different degrees of realism and complexity, but the
approaches based on remote sensing data are generally based on relatively simple models [95] because
these approaches have a clear inclination for operational applications at large scales. For these scales,
detailed information about the soil properties is scarce [73]. According to the FAO-56 procedures, it is
possible to calculate these RS-based NIWR irrigation water requirements also under water stress, as is
used either in controlled deficit irrigation or in supplemental irrigation. Knowledge of the desired
water stress degree is required, and further calibration of the methodology and the evaluation of
irrigation management using diagnostic tools is always recommended.

In these models, soil evaporation is calculated by separately applying a soil water balance in
the soil top layer as proposed by Allen et al. [6] and Torres and Calera [115]. This approach requires
the knowledge of the irrigation timing and amount, which is generally unknown for great areas.
Alternatively, some authors working at large scales, with scarce field data, proposed the concept of a
synthetic crop coefficient [113] that accounts for mean soil evaporation derived from canopy cover

http://pcraster.geo.uu.nl/projects/applications/sebs/
https://cran.r-project.org/
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estimates. Microwave remote sensing could provide insight on the bare soil evaporation, although
the scales of observation for the current sensors SMAP (Soil Moisture Active Passive) and SMOS (Soil
Moisture Ocean Salinity) (20 km) [142,143] is too coarse for the agriculture scale of interest.

Some initiatives implementing satellite-based irrigation advisory services have been developed in
Southern Italy, with IRRISAT (Irrigation assisted by Satellite, http://www.irrisat.it), in Lower Austria,
with EO4Water (Earth Observation for Water resources management, http://eo4water.com), and in
Southern Australia, with IRRiEYE (South Australian Trial for a Satellite Irrigation Advisory Service,
http://www.irrieye.com). These systems are based on the RS-PM method [58]. Thus, the calculation
of crop ET and suggested irrigation depth (pixel and plot scale) is based on the LAI calculation from
surface reflectance values and meteorological data. Remotely-sensed data from the virtual constellation
of Landsat 8, Sentinel-2 and DEIMOS are used to derive crop parameters (LAI and surface albedo)
on a weekly basis. Information is released to end users by using a web-GIS tool, developed in an
open-source software environment and implemented in three different areas. The structure of the
web-GIS has been adapted to each area considering the requirements of the local users. The IRRISAT
approach has proven that economic benefits generated by such advisory services are able to fully repay
the initial investments, creating advantages for the environment and opportunities for all of the users of
water resources. Accordingly, IRRISAT has been deemed a “best practice” for agricultural applications
by EURISY (Non-Profit-Organization aiming to promoting the benefits of Space to European Society,
see http://www.eurisy.org/good-practice-campania-encouraging-the-sustainable-use-of-irrigation-
water-in-the-region_85) and by the International Selection Committee of the call for “Best Sustainable
Practices on Food Security” for EXPO 2015 in Milan (Italy). In the specific context of Consorzio
of Sannio Alifano, Campania Region, the overall results in terms of cost-benefit analysis, obtained
comparing the 2012 irrigation season (pre-IRRISAT) and 2013 (post-IRRISAT), demonstrate water
savings of about 18%, while a survey on a sample of monitored farms highlights peak savings of about
25%–30% without loss of production [144].

An approach using satellite data, mobile phones and web-GIS tools for information delivery is
the IrriSatSMS system (Irrigation Water Management by Satellite and SMS) developed in Australia
by CSIRO (Commonwealth Scientific and Industrial Research Organisation). The system is based
on the NDVI-Kcb relationship [123] and was originally applied for vineyards in the Murrumbidgee
Irrigation Area, but the current geographic area covers the entire Australian continent. The IrriSatSMS
system aims to simplify input data collection requirements and reduce both the costs and complexity
of information output [145]. The core of the system was initially a server that acted as a data collection
portal for various data feeds and a processing engine to convert these data into usable irrigation
management information. The most recent version makes use of the Google Earth Engine for the
image processing and algorithm implementation. Originally, the system relied mainly on a Short
Messaging Service (SMS) interface to communicate with irrigators directly on their mobile phones and
later development included a web-interface (https://irrisat-cloud.appspot.com/). The web interface is
easily accessible; the target fields can be defined (drawn) by the user; and the information contained in
the system is well presented and easily reached. Some information about the crop type, management,
growing cycle and soil properties is required in order to complete the water balance.

In the framework of the NASA Terrestrial Observation and Prediction System (TOPS) [146],
an application for near-real-time mapping of crop canopy conditions and associated CWR at the
resolution of individual fields has been developed. The TOPS Satellite Irrigation Management Support
(TOPS-SIMS) integrates satellite observations from Landsat and MODIS with ETo from meteorological
information and ancillary data on crop type and site-specific conditions. The initial implementation
provides a capability for mapping fractional cover, associated basal crop coefficients, and ET over
3.7 million ha of farmland in California’s Central Valley. A generalized NDVI-Kcb relationship is used
for near-real-time mapping Kcb and ET. Refinements introducing crop-specific NDVI-Kcb relationships
are introduced a posteriori when this knowledge is available [125]. A web-based user interface provides
access to visualizations of TOPS-SIMS (https://ecocast.arc.nasa.gov/simsi/). The variable and date

http://www.irrisat.it
http://eo4water.com
http://www.irrieye.com
http://www.eurisy.org/good-practice-campania-encouraging-the-sustainable-use-of-irrigation-water-in-the-region_85
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visualized can be selected, and the data associated with the plot analyzed can be downloaded in
numerical and graphical formats.

In Southern Spain, a first experience was developed in 2005, by using time series of Landsat 5
images to obtain Kcb curves based on NDVI temporal evolution and displaying them on SPIDER
(System of Participatory Information, Decision support and Expert knowledge for irrigation River
basin water management, http://maps.spiderwebgis.org/webgis), a web-GIS based on open-source
software developed by the University of Castilla-La Mancha. SPIDER has evolved from a 2005
prototype, and it is currently providing time series of Sentinel-2a and Landsat 8 imagery and derived
products for the whole Iberian Peninsula, covering Spain and Portugal (around 600,000 km2). SPIDER
is able to display time series of raster and vector maps, adding the capability to also display time
trajectories of pixel-based values for the periods defined by the user. The main layers displayed by
the systems are ETo maps, color composition RGB, NDVI, Kcb and CWR values, 24 hours after image
delivery in the web-portals of Landsat 8 and Sentinel 2A by USGS and Copernicus, respectively. The
image processing is off-line, and a normalization process allows the operation of multiple image
sources as a multi-sensor virtual constellation; see Figure 3. A mobile app version of SPIDER web-GIS
(Agrisat App) was released in 2016 and is available in the most common digital distribution platforms
for mobile devices.
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Figure 3. Scheme of the modular system based on the integration of remote sensing and weather
observations into a web-GIS, to provide users with irrigation scheduling, matching the water supply to
crop water demands. CWR, crop water requirements; IWR, irrigation water requirements.

An additional system with interesting applications in agriculture is EEFlux (Earth Engine
Evapotranspiration Flux, accessible at http://eeflux-level1.appspot.com/). EEFlux operates on
the Google Earth Engine system and has been developed by the consortium of the University of
Nebraska-Lincoln, Desert Research Institute and University of Idaho with funding support by Google.
The system provides ET and reference ET estimates based on the METRIC model [69] applied to
Landsat images around the globe. EEFlux is calibrated by assigning values to the ratio between actual
ET and reference ET for the “hot” and “cold” parts (pixels or group of pixels) of the surface temperature
spectrum of the scene [147]. EEFlux differs from the previous systems analyzed in the nature of the
ET estimates that EEFlux provides. This system could be complementary to the previous models in
the determination of the water stress, since it is based on the estimation of the actual values of ET,
accounting for the water stress conditions. The automated calibration in EEFlux is still evolving, but
EEFlux shows promising perspectives to reach actual ET.

http://maps.spiderwebgis.org/webgis
http://eeflux-level1.appspot.com/
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3.3. Comparison of the Decision Support Systems Based on Web-GIS Technology

Table 2 shows the main characteristics of the web-GIS-based decision support systems
analyzed in the text. The development of these operational systems for the assessment of water
management confirms the maturity and the applicability of the methodologies reviewed in this
paper. The advantages and improvements over traditional irrigation advisory services, based on field
measurements and Kc-tabulated values, are the capability of the satellite-based system to reflect the
actual conditions of the canopy, covering large areas and increasing the efficiency of field work.

Table 2. Relevant aspects of the web-GIS-based decision support systems analyzed in the text. IRRISAT,
Irrigation assisted by Satellite; TOP-SIMS, Terrestrial Observation and Prediction System Terrestrial
Observation and Prediction System; IrriSat-SMS, Irrigation Water Management by Satellite and SMS;
SPIDER, System of Participatory Information, Decision support and Expert knowledge for irrigation
River basin water management; EEFlux, Earth Engine Evapotranspiration Flux.

IRRISAT TOP-SIMS IrriSat-SMS SPIDER EEFlux

Accessibility User and
password Open Accessible with

Gmail account
User and
password Open

Base maps
Google

Satellite/Open
street maps

Google
Satellite/Google

Terrain

Google
Satellite/Google

Terrain

Google
Maps/Open
street map

Google
Maps/Open
street maps

Processing time 24 h after
delivery - Automatic after

delivery
24 h after
delivery -

RS-based
approach RS-PM Kcb-VI Kcb-VI Kcb-VI METRIC

Most
elaborated

product

Maps of
irrigated areas,

LAI, CWR

Maps of Kcb
and crop

transpiration

Water balance
components

Maps of Kcb,
ETo and CWR

Actual ET,
accounting for

water stress

Coverage

Campania
Region (Italy);
Bookpournong

(Australia)

California

Global, ETo
available for
the east of
Australia

Pilot areas,
400,000 km2 for

the largest
project.

Global

Period covered 2007–2016 2010–2016 2014–2016 2013–2016 -

Dedicated App No No No Yes No

The basic information provided by each system is similar: vegetation indices, color composites
and core biophysical parameters derived from satellite data and related with the water use, like crop
coefficients. All of the systems take into account the necessity of spatio-temporal analysis, and the user
can visualize the images and query the information for different dates or time periods. An interesting
option in all systems is the capability to display the location of the user or web-connected device in the
maps. This geolocation, with the reference of the most recent satellite images, can be used to identify
areas of interest in the field, like zones with unusual crop development. An additional point of general
agreement is that weekly is the best compromise of timing for using and receiving the information
about plant status and CWR.

The information provided and the calculation procedure varies between the systems analyzed.
IrriSatSMS has powerful processing capabilities because it is able to calculate, on-the-fly, a soil
water balance for the user-drawn polygon. The system is able to estimate and update the actual
NIWR and soil water content based on the information provided by the end user. In comparison,
EEFlux is able to estimate actual ET for the analyzed area, but without additional knowledge
requirements. The information about NIWR and other components of the satellite-based soil water
balance can be displayed in other web-GIS tools, like SPIDER or IRRISAT, but must be processed
off-line. An example of the implementation of an RS-based soil water balance for the whole
Iberian Peninsula at the pixel scale in irrigated areas can be seen in the SPIDER group named
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SPIDER-CENTER (http://maps.spiderwebgis.org/login/?custom=spider-center). This project is
funded by the Spanish Ministry of Agriculture (for further information and accessibility, the reader
is referred to http://www.magrama.gob.es/es/desarrollo-rural/temas/centro-nacional-tecnologia-
regadios/nuevas-aplicaciones-tecnologicas/).

This difference in the processing capabilities also implies a substantial difference in the data and
knowledge requirements. While SPIDER or IRRISAT can display the results of the models based on
land use and soil properties maps, IrriSatSMS makes use of the knowledge of the end user in terms of
soil properties, crop, planting dates and management. An additional difference between the various
systems is the accessibility to pixel- or plot-based information. IRRISAT, EO4Water and IRRiEYE
provide information at the pixel and plot scale. IrriSatSMS emphasizes the plot scale. SPIDER and
TOP-SIMS allow the direct comparison of multiple pixels or small grids. SPIDER provides a dynamic
multiple parameter chart with the temporal evolution of the selected parameters for different locations.
This capability opens the possibility to show and compare the spatial distribution of the CWR or
related variables and may be of interest for the analysis of crop uniformity. Although irrigation and
other tasks are currently planned and performed for the whole plot, new machinery for variable rate
irrigation is becoming available. The accurate generation of spatial irrigation recommendation, as
is the case of NIWR maps at the pixel scale based on RS, is essential for the implementation and
evaluation of variable irrigation ratio technologies [148].

Additional conclusions can be extracted if the methodology is analyzed from the perspective
of the end user. The farmers willing to adopt these techniques are familiar with point soil water
content sensors in such a way that they are able to check with their own knowledge the reliability
of RS recommendations, comparing them with other sources of water requirement estimation. For
this reason, easy access to timely information is crucial. Direct access by farmers in real time to the
images in the way of the usual RGB color combination is very useful. These RGB/NDVI images enable
farmers to gain confidence in identifying some details in the images that they have observed directly
in their fields, such as sprinkler failure and non-uniform water distribution effects. In addition, the
temporal evolution of the spectral vegetation indices or related parameters obtained during several
growing seasons helps to compare the effects of management strategies (i.e., planting dates, fertilization
strategies or the performance of different varieties). An interesting complement is the identification of
phenological stages based on the temporal evolution of crop reflectance. Regarding our knowledge,
no operational systems are providing this kind of information directly to the farmers. However, it is
necessary to highlight the advances already achieved in this field [149,150] and the necessity of this
information for the scheduling of agricultural tasks.

3.4. Predicting CWR a Week Ahead

Providing advice about CWR in operative scenarios, one week ahead seems to be a reasonable
expectation, providing enough time and ensuring the accuracy of the CWR forecast. The relevance
of this predictive product was already highlighted by [4] and clearly recognized by the traditional
irrigation advisory services, but the remote sensing community was primarily interested in the accuracy
of RS-based ET estimates. The prediction of CWR one week ahead allows for planning irrigation
scheduling adapted to the power supply rates, water availability, irrigation systems, precipitation
probability and farmer´s availability.

Predicting CWR one week ahead requires the extrapolation of the Kc-Kcb data and weather
forecasts for ETo prediction. CWR forecast is a logical step in the reflectance-based Kcb models [35,125],
although some of the operational systems, like TOPS-SIMS, still do not incorporate this product.
A prediction of CWR is fully operative in IrriSatSMS and is under development for the IRRISAT,
EO4Water and IRRiEYE systems based on LAI-VI relationships [151]. A commercial development of the
CWR prediction based on Kcb-VI relationships has been developed in Spain (http://www.agrisat.es).
The initial approach is based on a generalized Kcb-VI relationship following previous approaches
discussed in this paper [123,125].

http://maps.spiderwebgis.org/login/?custom=spider-center
http://www.magrama.gob.es/es/desarrollo-rural/temas/centro-nacional-tecnologia-regadios/nuevas-aplicaciones-tecnologicas/
http://www.magrama.gob.es/es/desarrollo-rural/temas/centro-nacional-tecnologia-regadios/nuevas-aplicaciones-tecnologicas/
http://www.agrisat.es
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Considering that ETo can be estimated from common meteorological data, ET can be calculated
from short-term numerical weather forecast. Two complementary methods with different spatial
scopes and accuracy have been introduced. The first one is to use the full power of numeric weather
forecast to determine the variables required to compute ETo according to the FAO-56 formulation.
The second one is based in daily temperature forecasting by using it as the input into the Hargreaves
and Samani equation to estimate ETo [6]. The latter method should be restricted to areas where
the Hargreaves and Samani equation works well (no windy areas, no coastal areas) and where no
forecasting of other meteorological variables than temperature is available. An inter-comparison
analysis has been recently published considering ensemble forecast models up to five days and a
spatial resolution of 7 km [152]; this study, based on COSMO-LEPS data (Limited-Area Ensemble
Prediction System provided by the European Consortium for local-Scale MOdelling), has evidenced
the robustness and reliability of ETo forecasts with the PM equation.

Computing ETo according to FAO-56 from weekly numeric weather forecast is the preferred
option. Maps of weekly predicted ETo are routinely provided by the Spanish Meteorological Agency,
AEMET (Agencia Estatal de Meteorología). The prediction is based on the High Resolution Limited
Area Model (HIRLAM) and the European Center for Medium-range Weather Forecasting (ECWMF)
models. The spatial scope of this product is the Iberian Peninsula, as presented in Figure 4, and the
spatial resolution of the raster map is a pixel size of 5 km. The ETo predictions are routinely compared
with the weekly measured ETo maps provided by the same agency and ETo values obtained from
ground stations (www.siar.es). Finally, the adequate estimation of CWR requires the extrapolation of
reflectance-based Kcb, or related variables, like LAI and hc for RS-PM methods. This extrapolation
takes advantage of the smooth shape of the Kcb curves derived from time trajectories of NDVI (see
Figure 2). Therefore, the time trajectory of the Kcb and LAI or related parameters is suitable to be
extrapolated using previous dates for short periods, as is the case of one week.
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4. Conclusions and Perspectives

The experiences gathered during the past 30 years support the operational use of irrigation
scheduling based on spectral inputs. Currently, the operational use of dense time series of multispectral
imagery at high spatial resolution allows monitoring of crop biophysical parameters related with
crop water use during the growing season with unprecedented temporal and spatial resolution.
This information is needed and highly appreciated by the end users, such as professional farmers
or decision-makers, but several steps are necessary prior to introducing this information into the
day-to-day routine of irrigation farming. The information about crop water requirements must be
provided with sufficient future prediction, and one week ahead seems to be a reasonable lead time.
In addition, the end users require access to this information and to the time series of images in an
easy-to-use way and in near real time. This information can be provided by using the improvements
achieved in web-GIS methodologies and further developments, like mobile apps. The advancements
in crop ET assessment, the accessibility to satellite images and the availability of accurate forecasting
of meteorological data allow for precise predictions of crop water requirements.
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